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In a recent study we showed that the two-fluid (TF) formulation can be used in the
direct numerical simulation (DNS) of bubble- (or particle-) laden decaying isotropic
turbulence with considerable saving in CPU-time and memory as compared to the
trajectory approach employed by many researchers. In the present paper, we develop
a Lagrangian—Eulerian mapping (LEM) solver for DNS of bubble-laden turbulent
shear flows using TF. The purpose of LEM is to resolve the large gradients of bubble
velocity and concentration which result from the absence of the diffusion terms in
the equations of bubble-phase motion and the preferential accumulation of bubbles.
A standard finite-difference scheme (FDS) fails to resolve these gradients. We ex-
amine the performance of the new method in DNS of a bubble-laden Taylor—Green
vortex, spatially developing plane mixing layer, and homogeneous shear turbulent
flow. (© 1999 Academic Press
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I. INTRODUCTION

In arecent study [1] we used the two-fluid (TF) approach in direct numerical simulatio
(DNS) of a decaying isotropic turbulence laden with microbubbles. The TF approach tre
each phase as a continuum with its own continuity and momentum equations. TF is
alternative to the trajectory approach commonly used in DNS of particle-laden flows [
The motivation for using TF in DNS of particle-laden flows is that it reduces considerat
the required CPU-time and memory, as compared to the trajectory approach.
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The implementation of TF formulation in DNS of particle- (or bubble-) laden turbuler
shear flows may be limited by the large gradients of concentration of particles due
their preferential accumulation. Itis well known that heavy particles, due to their inert
accumulate in the low-enstrophy regions of the flow [3-5]. On the other hand, bubbles v
negligible mass but with added-mass inertia, accumulate in the high-enstrophy regi
generally associated with the centers of vortices [3]. This preferential accumulation cre;
regions devoid of bubbles neighboring regions of high bubble concentration and hence |
gradients of concentration. The inability of a standard finite-difference scheme (FDS]
resolve these large gradients produces numerical instability and erroneous results. An
source of numerical instability is the presence of the nonlinear advection terms and
absence of the diffusion terms in the equation for the bubble-phase velocity. The nonlir
advection creates large gradients of bubble-phase velocity which are similar to thos
the shock-wave solution of the inviscid Burgers equation [6]. The large gradients of -
bubble velocity and concentration cause numerical resolution and stability problems w
performing DNS with the TF formulation using FDS in solving the governing equations f
the bubble-phase velocity and concentration.

In our study [1] we considered microbubbles, whose diamétgris smaller than the
Kolmogorov length scale; (to satisfy the necessary conditions for deriving the exact equ
tions of bubble motion) and their response timg,is much smaller than the Kolmogorov
time scale,zx. We showed that under these conditions, the preferential accumulation
bubbles in decaying isotropic turbulence is negligible. Thus, large gradients of bubble c
centration and velocity are not created, and FDS can be successfully used in DNS/TF.

In the present paper, we develop a Lagrangian—Eulerian mapping solver (LEM) to
form DNS of bubble-laden flows using the TF formulation. The purpose of LEM is t
resolve the large gradients of the bubble-phase velocity and concentration that are cre
by nonlinear advection and preferential accumulation in the absence of the diffusion te
in the equations of the bubble-phase motion. We examine the performance of LEM in D
of three bubble-laden flows: Taylor—Green vortex, a plane spatially developing mixi
layer, and a homogeneous shear turbulent flow. We consider bubbles with sufficiently Ie
added-mass inertia and show that FDS is not capable of resolving the bubble-phase vel
and concentration, whereas LEM is.

The paper is organized as follows. The LEM solver is described in Section Il. Section
examines the performance of LEM and compares it with that of FDS in DNS of a bubb
laden Taylor—Green vortex, a plane spatially developing mixing layer, and a homogene
shear turbulent flow. Concluding remarks are presented in Section IV.

II. LAGRANGIAN-EULERIAN MAPPING SOLVER
FOR A PARTICLE-LADEN FLOW

In this section we develop the LEM solver as a general method for the intergation
the conservation equations of mass and momentum of the dispersed phase (solid part
liquid droplets, or gaseous bubbles). Hereinafter, the dispersed phase will be denote
particles unless stated otherwise. In the following sections, we examine the performal
of LEM in DNS of bubble-laden flows only.

According to the two-fluid (TF) formulation [1], the conservation equations of th
particle-phase momentum and mass can be written in the general form,

aVi +Vjo;Vi =RV, U,r1, 1
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FIG. 1. Mapping of the Eulerian grid(t) = X4, on the Lagrangian gridt 4+ dt) = x, +dr. Attimet = 0 the
Lagrangian grid nodes (empty circles) coincide with the Eulerian grid nodes (filled circles in (a)). At-imig
the Lagrangian grid nodes are shifted with respect to the Eulerian grid nodes (b).

%C +9;(CV)) =0, (2)

whered, = 9/t andd; = 9/9x;, and the term on the rhs of (1) describes the force actin
on the particle. The fluid velocityJ(r, t), at a given timet is assumed to be a known
field obtained by the integration of the Navier—Stokes equatMfst) andC(r, t) are the
particle-phase velocity and concentration, respectively.

As discussed earlier in the Introduction, large gradients ahdC are created due to the
nonlinear advection as well as the preferential accumulation of particles and the absen
the diffusion terms in Egs. (1) and (2). These large gradients often render a stable nume
solution of (1) and (2) impossible in DNS using a standard finite-difference scheme (FD
In order to overcome this problem, we developed an Eulerian—Lagrangian mapping (LE
solver to integrate Egs. (1) and (2) for the particle velocity and concentration, as descri
below.

At a given time stept, the fieldsC(r, t), V(r, t), andU(r, t) are defined at the Eule-
rian grid nodes with coordinatas= xq4, wherexg = {i AX, jAX,kAx},i=1,...,N, j=
1...,N,k=1,...,N, Ax=1/N (Fig. 1). In order to obtain the velocity,(xg, t 4 dt),
and concentration£; (xg, t + dt), at the next time steg ¢ dt) at thesameEulerian grid
nodesxg, the LEM solver proceeds as follows.

First, the time integration of Egs. (1) and (2) is performed along the characterigdics
which are defined via

dr
— =V(r,1), 3
at (r,v) ©))
with the initial condition at time,
r(t) = Xg. (4)

The velocityV (r(t + dt), t + dt) is then evaluated via a predictor-corrector scheme as

V* =V(Xg, t) + dtF(xg, t),
1 (5)
V(r(t +dt), t +dt) = V(xg, t) + Edt(F* + F(Xg, 1)),
where

F*=F(U, V", Xg, 1). (6)
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The concentrationC(r(t +dt), t +dt), is also evaluated via a predictor-corrector
scheme as

C* = C(Xg, t) — dt C(Xg, 1) divV(Xg, t), @
7
C(r(t +dt),t +dt) = C(xg, t) — %dt[C(xg,t) + C*]div V(Xg, t).

Now the velocityV, and concentratiorG, are defined via Egs. (5) and (7) at Lagrangiar
grid nodes with coordinatast + dt) given by

r(t 4 dt) = xg +dr, (8)

where the displacemedt is obtained by time integration of Eq. (3) as

dr = SAUV(r(t+ 0, T+ dD + Vg, D], ®)

with the initial condition (4). Equations (3), (4), (8), and (9) define a mapping of tr
Eulerian grid,xq, onto a Lagrangian gridg + dr (see Fig. 1). Now the desired velocity
and concentration can be evaluated at the Eulerian grid nodes via interpolation.

In order to retain the second-order accuracy of the solver, we prescribe the tingtstep
small enough, so that

Uodt ~ (AX)2, (10)

whereug is a characteristic magnitude of the velocity fielde.g., turbulence rms velocity).
Then, the displacement modulgs| >~ ugdt, and

|dr| ~ (AX)2. (11)

Note also that, fornx « 1, (10) ensures that the CFL stability condition is satisfied in thi
integration of the Navier—Stokes equations for the fluid velocity.

Now we obtain the particle concentrati@yxg, t 4 dt), and velocityV (xg, t + dt), atthe
Eulerian grid nodesxg) using fieldsC(r(t 4 dt), t +dt) andV(r(t 4 dt), t +dt), defined
at the Lagrangian grid nodés(t + dt)), (8) via

C(Xg, t +dt) = (L —drV)C(r(t +dt), t +dt), (12)
and
V(Xg, t +dt) = (1 —-drV)V(r(t +dt), t +dt). (13)

It should be noted that the interpolation (12) makes LEM a non-conservative schel
Thus the concentration gradient, defined in (12) on the Lagrangian grid (8) with non-unifc
spacings, should be evaluated with sufficient accuracy. In the DNS of bubble-laden fl
presented in the next section, the gradients of the concentration and velocity are evalt
using the corresponding values at the Lagrangian grid nodes via central finite differenc
as

Ci+1j,kt+dt)—C( —1,j,k t+dt)
2AX

ViC = (14)
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and

ViV:V(l+1,J,k,t+o|t)—V(|—1,J,k,t+dt) (15)
2AX

in a given {th) direction.

The calculations of the gradients of the velocity and concentration via Egs. (14) ¢
(15) are of second-order accuracyA due to condition (11). Thus, for\x)2 ~ |dr|, the
interpolation (12)—(15) does not degrade the over-all second-order (both in space and t
accuracy of the LEM solver.

Ill. VALIDATION OF LEM SOLVER FOR BUBBLE-LADEN FLOWS

In this section we present the results of DNS using LEM for three different flows lad
with small spherical bubbles: a Taylor—Green vortex, atwo-dimensional spatially develop
mixing layer, and a three-dimensional homogeneous shear turbulent flow. Our objectiv
to examine the performance of DNS using LEM and to compare the results with thc
obtained from DNS using a standard finite-difference scheme (FDS).

We employ TF for the equations of motion of the bubble-phase, and the same assump
and physical properties of the bubbles (the bubble gas density and the boundary cond
at the bubble surface) as in our earlier study [1].

A. Bubble-Laden Taylor—Green Vortex

As afirst test case, we consider a Taylor—Green vortex (TG) flow laden with bubbles.
assume that the bubble concentration is small enough, so that they do not affect the ce
flow (one-way coupling). The governing equations of the conservation of the moment
and mass for the fluid and bubble phases are [1]:

fluid phase,
DU 1
=——0;P+vAU; 16
Dt Py P+ i ( )
U; =0; (17)
bubble phase,
50U L,y )
d¢t ~ "Dt ' | 7
dC
rTi —-Co;V;. (29)

In the above equation¥; andU; are the instantaneous velocities of the bubble-phase ai
fluid, andC is the instantaneous bubble concentration. The notations for the total derivati
areD/Dt =9, + U;9; andd/dt=9; + V; ;. The bubble response timg is

d3

To

In this test simulation we neglect the effect of the gravity.
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TG-flow [7] represents an exact two-dimensional, time-dependent solution of the Navi
Stokes equations (16) and continuity equation (17) with the velocity compongnts, (
U). The corresponding instantaneous, local stream function can be written as

W(X,zt) = % exp(—vk?t) coskyx cosk,z, (21)

wherewyg is the initial maximum vorticity;kx andk, are the wave numbers ix and z
directions, ank? = k2 + k2. The flow vorticity,w, and pressurep, are

U Ay,

o= — = —k?*w, (22)
0z aX

1[/0w\? [ow\?
P=Py—=|(— — k*w?|. 23
=5l (5) + (5) v @)

The fluid velocity components are
ow k.

Uy = = —wok—z exp(—vk?t) coskyx sink,z, (24)

ow ¢ .
U, = = wok—z exp(—vk?t) sinkyx cosk,z. (25)

DNS is performed for a flow Reynolds numliige= 1/v = 10000, and aninitially uniform
concentration of bubbles. We set the paramektgesk, = 27 andwo = 1. The initial fluid
pressure and velocity are prescribed by Egs. (23), (24), and (25 @tThe initial velocity
componentd/, andV; of the bubble phase are set equal to those of the surrounding flu
and the initial bubble concentration is uniform constant,

VX = Ux, Vz = Uz, C = X, (26)

whereag is small enough (e.gao = 10"%) to neglect the influence of the bubbles on the
carrier flow as well as the direct interaction between the bubbles.

DNS is performed with two different grids of 964 x 96 and 192 4 x 192 points in
thex, y, andz directions, and for two bubble response timgss 0.15 and 0.45. Although
the TG flow considered here is essentially two-dimensional, the numerical method us
3D-algorithm, where the flow is homogeneouyidirection. The integration is performed
with time stepAt =0.5Ax, where cell sizeAx =1/Ng and Ng =96 or 192 for the two
different meshes.

Figure 2 shows the contours of the enstropbi;, and bubble concentratiof, (in gray
scale) in anX, z)-plane obtained from DNS using LEM solver with mesh 392 x 192
at timet = 20 for t, = 0.45. The figure shows that, owing to the inertial bias, the bubble
accumulate at the vortex centers (e.g., points-Q, z=0) and & =0.5, z=0.5)). Con-
sequently, local sharp peaks of the bubble concentration are created at the vortex cel
where the enstrophy has its local maxima.

The growth of the bubble concentration at the vortex center can be described analytic
provided that the bubble response time is small compared to the flow time scale,
(t/75)? =~ (Tpwo)? < 1. Then, an approximate solution of Eq. (19) for the maximum bubbl
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FIG. 2. Contours of the flow enstrophy?/w? (in lines), and bubble concentratio@/Cy, (in grey scale),
normalized by the corresponding maximum value%~= 0.788 andC,,/ao = 752, in the Taylor—Green vortex
flow at timet = 20. The increments of the enstrophy contours are equal to those in the table for the concentral

concentrationCr,, at the vortex center, can be written in the form [1]

2
Cm = ap exp{z‘fb (woklx(s'fz> [1 — exp(—2vk?t)] } (27)

Figure 3a compares the temporal development of the bubble concentration at the vc
center,Cn(t), normalized by the reference concentratign obtained from the analytical
solution (27) forr, = 0.15 to that of DNS using LEM solver (with meshes 9@ x 96 and
192 x 4 x 192) and DNS using FDS (with mesh 964 x 96). As expected (forrwo)? =
0.0225« 1), the figure shows good agreement between the DNS results and the analy
solution (27). Also, the difference between the DNS/LEM results of the two meshes is |
than 1%.

In the case of relatively small bubbles o < 0.15), no numerical instability is observed
in DNS using FDS fot < 15. However, the instability occurs for larggy, when the pref-
erential bubble accumulation becomes more pronounced. Figure 3b compares the tem
development of the concentration maximum and minim@gxandCn, obtained in DNS
using LEM and FDS fot, = 0.45. The figure shows that, foe- 10, FDS reduces the growth
rate ofCrhax@as compared to LEM. The figure also shows that the numerical instability d
velops in DNS with FDS fot > 15, causing an exponential growth of negatisg, which
is unacceptable. On the other hand, no numerical instability occurs in DNS using LEM. T
bubble concentration distribution obtained in DNS using LEM at time20 is presented
in Fig. 2. In this case, the difference between the result€fax from the DNS/LEM with
two different meshes (9% 4 x 96 and 192« 4 x 192) is of the order of 5% (cf. Fig. 3b).
Thus, in our DNS using LEM the effect of numerical diffusion remains negligible.

As was discussed in Subsection A, LEM solver is not a conservative scheme. Theref
as the concentration gradients grow, the conservation of the volume inte@a\ar the
computational domain (evaluated as a sum over all grid nodes) should be checked. Ir
present test case, this quantity is conserved with an accuracy of 0.1% in the simulation
7, = 0.15 and 3% in the simulation with, = 0.45.
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FIG. 3. (a) Temporal development of the maximum bubble concentration in the DNS with LEM solv
(for different meshes) and FDS of the bubble-laden Taylor—Green vortex; bubble responsg-tihé5. The
analytical solution for the concentration at the vortex center is in the dashed line. (b) Temporal developmet
the maximum and minimum valueSmaxandCnin, of the bubble concentration in the DNS of the bubble-laden
Taylor—Green vortex with LEM solver (for different meshes) and FBS; 0.45.
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7z Uref =0.5tanh2z+ 1.5

FIG. 4. Reference frame and the inflow streamwise velocity profile for a spatially developing plane mixil
layer (SDML).

B. Bubble-Laden Spatially Developing Mixing Layer

Here we test LEM in a two-dimensional spatially developing mixing layer (SDML)
laden with small concentration of bubbles (one-way coupling). In a recent study [8] \
developed a numerical procedure and performed DNS/LEM of a three-dimensional bub
laden SDML. Thus in the present paper we consider the two-dimensional case only
show that FDS is not capable of resolving the bubble-phase velocity and concentratio
this flow, whereas LEM is.

Figure 4 shows the flow geometry and reference frame. The inflow reference streamv
fluid velocity profile,Ut(z), atx =0 is prescribed as (Fig. 4)

Uref(z) = 0.5tanh Z + 1.5. (28)

Inthis case, all the variables are made dimensionless via scaling by the initial vorticity thi
ness g, and velocity differencel); —U* = AU*, whereU; andU>* are the velocities
of the high- and low-speed streams. The corresponding dimensionless velocities (obta
asU* =Uef(z — +00)) areUT =2 andU~ =1, and the initial dimensionless vorticity
thickness is

AU

d Uref/ dz (29)

dp0 =

z=0
In this case, the governing dimensionless equations of the conservation of the momer
and mass for the fluid and bubble phases are:

fluid,
DU; du 1 d2u ~
D T YU + Ut = = - AP+ v(six R 82Ui), (30)
3]' Gj = 0; (31)
bubble phase,
dv, du
+ Uref axv + V28|x ref
dt dz

DU, dy 1~ -
=3( " +UerdUi + Usdi— ) + =0 = Vi + W), (32)
Dt dz T
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dC ~

In the above equations]i andV; are the deviations of the instantaneous fluid and bubble
phase velocities from the reference profilgs. The dimensionless viscosity is set equal
to v=1/RewhereRe= AU*§*,/v* is the Reynolds number based on the dimension:
velocity differenceAU*, the initial vorticity thickness§,, and fluid kinematic viscosity,
v*. The notations for the total derivativ&/ Dt andd/dt are similar to those in Egs. (16)—
(19), and the bubble response timg,is defined in (20). The bubble terminal velociy,

is defined as

W = 2m,9, (34)

whereg is the projection of the dimensionless gravity acceleration orethexis, g =
—gdiz. In our DNS, we prescribg= 1.

1. Numerical method for the carrier flowln order to perform DNS in a finite compu-
tational domain which corresponds to a physical domain infinite in the vericdiréction
(Fig. 4), and to resolve the mixing layer core zone with sufficient accuracy, a mapping
z-coordinate is introduced in the form

z
&= tanhé, (35)
and
7= 4|n(1+$> , (36)
1-¢

so that—1 < & <1 corresponds te-oo < z < co. Thus, the partial derivatives with respect
to zin Egs. (30)—(33) are expressed as

9 (1-82\ 9
8_2_( . )g (37)

Accordingly, the reference velocity (28) and its first and second derivatives are obtaine
explicit functions oft according to (35) and the equality (tanh=22 tanhz/(1+ tanltf z)).

Although the flow is uniform in the/-direction, we use a three-dimensional numerica
procedure, developed in our recent study [8], to solve the momentum conservation and
tinuity equations (30)—(33) in a parallelpiped computational domain whose dimensionl
sides are @ x <80,0<y <0.667, and—1< ¢ < 1. Equations (30) and (31) for the fluid
phase are discretized in an Eulerian framework using a second-order finite-differencin
an equispaced staggered grid containiyg= 480 points in thex-direction, Ny =4 in the
y-direction, and\,; = 96 in thez(&¢)-direction.

The mean advection termé,;9,U;, are evaluated using a second-order upwind dif
ferencing scheme [9]. A second-order Adams—Bashforth scheme is used to integrate
equationsintime. Pressure is obtained by solving its Poisson equation via a cosine trans
(employing FFT [10, 11]) in thex-direction, using FFT in theg-direction, and Gaussian
elimination in thez(&¢)-direction [12].
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Standard periodic boundary conditions for the velocity components, pressure, and
bubble concentration are imposed in the spanwisdi(ection. The Neumann’s (stress-free)
conditions are imposed in tt&&)-direction as

99 =0, até = +1, (38)
9§
whereg denotes the bubble and fluid velocities, pressure, and the concentration.

Two different boundary conditions are imposed in the streamwiséifection, at the
inflow (y — 2) plane,x =0, and outflow planex = 80.

At the inflow plane x = 0), forcing is used to initialize the spanwise vortex rollup [9].
Thus the unsteady fluid velocity componentg a0, U,[ (z, t) andU,! (z, t), are composed
of the product of harmonic functions of time and the eigenfunctions of the most unsta
(fundamental) model with frequenc®o=4/3, and its first and second subharmonics
Q1.2. The eigenfunctions are obtained by solving the two-dimensional Rayleigh-equat
eigenvalue problem for each of the three frequen€igs .. We follow the proposal of
Sandham and Reynolds [13] and include random-walk phases in the forcing function
simulate a natural mixing layer. All modes are forced at an amplitude of 0.02.

The inflow bubble concentration is uniform constaitx =0, y, z) = «ap, and the inflow
bubble velocity is set equal to the instantaneous local fluid inflow velocity.

At the outflow plane X = 80), a time-dependent, advection condition is imposed as

d¢ + Uadxp =0, (39)

whereg denotes the velocitids;, Vi, and concentratio®, andU, = (Ut +U~)/2=1.5
is the nominal speed of the vortex structures [9] (defined as an average of the high-
low-speed stream velocitield,” =2 andU ~ =1).

2. Testing LEM solver in DNS of the bubble-laden SDMWe integrate Egs. (32)
and (33) in two steps. First, we integrate (32) and (33) using LEM solver, without takil
into account the advection terms due to the reference Ve|®.ﬁi§f}ax\7i andU,es 04xC. The
resulting equations are

dv; ~ du DU, ~ ~ du 1 ~ -
L= Vi 43— + Urerax Ui + Ui —= ) + =(U; — Vi + Wsyy),
dt dz dz T
(40)
dC .
5 = ~Caivi. (41)

whereV; andC denote the intermediate values of bubble-phase velocity and concentrati
respectively.

At the second step, we account for the advection terms due to the reference velocity,
the second term on the lhs of both Egs. (32) and (33). Thus we evaluate the bubble velo
V, and concentratior, at the upstream position from where they are advected by the me
velocity Uy (in the x-direction) during the time steght as

Vi = Vi — U8, Vi dt, (42)
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and
C = C — U0 Ct, (43)

where the gradients of; andC are evaluated via a second-order upwind differencing [9]

DNS of SDML is performed for Reynolds numige= 400 with time stepAt = 0.1AX =
1/60. The instantaneous fluid velocity field;, i = x, y, z, attimet =0 is set equal to zero
throughout the computational domain. In order to minimize the influence of the initi
conditions and the transient fluid motion, we compute only the fluid velocity field un
timet =80 from Eqs. (30) and (31). By this time, the initial flow-field is “washed” out of
the computational domain by the mean advection, and the carrier flow can be regarde
nearly stationary. At =80 we inject bubbles into the flow and start solving Egs. (32) an
(33) for the bubble-phase velocity and concentration together with Egs. (30) and (31)
the carrier fluid velocity. The initial bubble concentration is uniform constant througho
the computational domaif(t = 0) = ag, Wherewq is small enough to neglect the influence
of the bubbles on the carrier flow (e.go=10"%).

The bubble response time is prescribedrgs- 0.05. Thus the dimensionless bubble
diameterd, = (36v1,)Y/? ~ 0.015, wherev = 1/Rg Re=400, so that the conditiod, <
8.,0=1 is satisfied. The dissipation length scale of the fligys, is estimated akjiss >
1/ (Rewman 2. The vorticity maximum is of the ordesmax ~ 1 throughout the simulation,
so thatlgiss >~ 0.05. Therefore, the bubble diameter is smaller than the flow dissipatic
scale, and much smaller than the initial layer vorticity thickndss; | giss < 8,0. Thus the
two-fluid formulation is justified in this case. Our numerical results show that the bubt
Reynolds number remains less than 1 throughout the simulation. The condRtiprsl
andd, < lgiss are consistent with the assumptions used in deriving the equation of moti
of the bubble phase (32).

The initial bubble velocity at any location is set equal to the local instantaneous flt
velocity,

\7i = 0i~ (44)

Figure 5 compares the temporal development of the absolute instantaneous maxima ¢
modulus of the divergence of the bubble velodithy V|, and the concentration gradient,
|VC|m, obtained from DNS with LEM and FDS. The figure shows that in the DNS wit
FDS, numerical instability in the velocity of the bubble phase develops shortly after t
injection of bubbles into the flow. The instability is first manifested in the exponenti
growth of|div V|, (for t >~ 80.15) and consequently causes an explosive growtW 6fj,,
for t > 80.5. Thus, in this flow, thenonlinear advectiorof the bubble velocity and the
absence of the diffusion terms on the rhs of Eq. (32) triggers the instability. Note also t
applying random phases in the forcing at the inflow plane 0), U,f (z,t) andU, (z, 1),
facilitates the development of the instability in DNS using FDS. On the other hand, DI
using LEM does not suffer from any numerical instability (cf. Fig. 5).

Figure 6a shows the instantaneous contoursypthe y-component of the vorticity (in
grey scale) at three different times=85 (i), t =90 (ii), andt =95 (iii). This vorticity
componentpwy, is obtained from the instantaneous fluid velocity fidldaccording to

_ d Uref

ot 3,0, — aU,. (45)

Wy
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FIG.5. Temporal development of the maxima of the modulus of the divergence of bubble veldigitj,,
and the concentration gradiefi¥,C|,,/ao, in the DNS with FDS and LEM of the bubble-laden SDML.

The figure shows the vortex pairing and rollup, enhanced by forcing at the subharmc
frequencyQ;. Comparing the locations of the rollers in Fig. 3 ((i)—(iii)) shows that the
rollers are advected with velocity, = 1.5. Note also that the vortices exit the domain
naturally, without being distorted, thus confirming the accuracy of the advection bound
condition (39) at the outflow plane & 80).

Figure 6b shows the bubble concentration obtained in DNS with LEM for the same tin
(t =85, 90, 95) as in Fig. 3a. The figure shows that bubbles, due to their added-mass ine
accumulate in the centers of they] rollers. In this simulation, the intergal of the bubble
concentratiorC over the computational domain is conserved with accurg@yl %.

C. Bubble-Laden Homogeneous Shear Turbulent Flow

The results of DNS of bubble-laden TG and SDML in the preceding sections show tl
LEM is capable of capturing the effects of the bubble preferential accumulation withc
creating numerical instabilities. As a further validation of the performance of LEM, we stu
in this section a bubble-laden homogeneous shear turbulent flow (HSF). The homogen
shear is implemented via prescribing a mean fluid velodity= (Sz 0, 0), whereS is
the dimensionless velocity gradient in thelirection. We consider both one-way and two-
way coupling cases, where the latter allows the bubble-phase motion to affect that of
fluid.

The dimensionless equations of the conservation of momentum and mass for the f
and bubble phases are [1]:

fluid phase,

DU; 1 -
D—tl + SZ)in + UzSCSix = _p_ai P+ vAU; + C/g‘Siz, (46)
f

jU; = 0; 47)



LAGRANGIAN-EULERIAN MAPPING SOLVER 187
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FIG. 6. (a)wy-vorticity contours of the two-dimensional spatially developing mixing layer at different times
t =85 (i), t =90 (ii), andt =95 (iii). Vorticity maxima arew,, =1.14, 1.03, and 1.12, respectively. (b) Bubble
concentration contours in the two-dimensional spatially developing mixing layer at different timé&%§ (i),
t =90 (ii), andt =95 (iii). Concentration maxima ar€,, = 1.4a, (i), C, = 1.6 (ii), and C,, = 2.12u (jii),
respectively.
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bubble phase,

d\Vi DU; 1
d—t' + SBM + V,SSiy = 3( t' + Sa,U; + uzsaix> + (Ui = Vi Wap), (48)
b
dcC’ , ,
dt+8@cz—@44mmw—sﬂ&—wy (49)

In the above equation); andV,; are the deviations of the instantaneous fluid and bubble
phase velocities from the reference mean profilei(z), andC’ is the instantaneous devi-
ation of the bubble concentratio@, from the instantaneous mean concentration in a give
(x —y) plane,Co(z, 1), i.e.,

C' =C - Co(z t). (50)

The modified hydrostatic part of the pressure fiéldn Eq. (46) is defined by using the
analogy between the bubbly flow and a stratified flow with dendity Co(z, t)) 1,

z
P=P+pfg/(1—co)dz, (51)
0

where P is the dynamic pressure. The initial reference bubble concentraiggr, 0), is
either uniform or has a constant gradient, 0eGo = &, whereS = —1, 0, and+1. Thus,
the instantaneous mean concentratiiyiz, t) can be obtained by manipulating Eq. (49)
and the transport equation 6fr, t) according to

Co(z 1) = Co(z,0) — WtS.. (52)

1. Numerical method for the carrier flow simulationThe three-dimensional momen-
tum conservation and continuity equations (46)—(49) are solved in a parallelpiped don
0<x<2,0=<y=<10<z<1. Equations (46)and (47) for the fluid phase are discretized |
an Eulerian framework using a second-order finite-difference technique on an equispe
staggered grid containinblg =96 points in each of- and z-directions and Rly =192
points in thex-direction. The imposed mean velocity gradient is in thdirection. The
mean advection term§2,U;, are evaluated using discrete Fourier interpolation. A sec
ond order Adams—Bashforth scheme is used to integrate the equations in time with
At=0.5Ax, Ax=1/Ng. Pressure is obtained by solving its Poisson equation via a fa
Fourier transform in thex- and y-directions and Gaussian elimination in thalirection.
Standard periodic boundary conditions for the velocity components and pressure are
posed in thex- and y-directions. In thez-direction (the direction of the imposed mean
velocity gradient) a shear periodic boundary condition is used. The shear periodic bol
ary condition for any variabld (t, x, y, 2) is prescribed as

f(t,x+2mg, y+mp, z+mg) = f(t,x — Smt, y, 2), (53)

wherem; are integer numbers. More details about the numerical method and its accur
are discussed by Geat al. [19].

We use an initialization algorithm to generate a divergence-free isotropic random fl
velocity field with a prescribed energy spectrétk) and spectral cross-correlations matrix
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of the velocity, satisfying the realizability constrains [20]. The initial energy spectrum
prescribed by

3u2 k k
Ekk,0) = —2— exp(—), (54)
A k% Kp

whereu, is the dimensionless rms velocityis the wave numbek? = k2 + k2 + kZ, where
ke=051,15,..., Ng/2, ky=1,2,..., Ng/2,k,=1,2,..., Ng/2, andk, is the wave
number of peak energy. The wave numbers are normalizég 32 . The dimensionless
kinematic viscosity is calculated from the prescribed initial microscale Reynolds numb
Re o and the computed initial dissipati@fi0).

2. LEM solver for the bubble-laden HSHn the case of HSF, we perform the integration
in two steps. In the first step, we integrate (48) and (49) using LEM solver, without taki
into account the mean advection ternSsyV; and S2,C’. In the second step, we use
Fourier interpolation in evaluating the bubble velocity and concentration at an upstre
position where the bubble is advected by the mean vel&#{in the x-direction) during
the time steplt.

Thus in the first step the LEM solver evaluates the intermediate bubble vel¢cnd
concentrationC, via solving the following two equations:

dv, DU, 1
L=3 L+ S +U,SSix ) + — (Ui — Vi + Wéip) — V, S8y, (55)
dt Dt Tp

Z—f =—(C'+Cpd;V; — S(V: — W). (56)

In this first step, LEM obtains the intermediate velocﬁ'ty(g, t 4+ dt), and concentration
C(xg, t +dt), defined on the Eulerian grid.

In the second step (where LEM is not involved), we account for the mean advect
terms (second term on lhs of both Egs. (48) and (49)). Thus we evaluate the bubble velo
V, and concentratiorC’, at the upstream position from where it is advected by the mee
velocity Sz(in thex-direction) during the time steght using a discrete Fourier interpolation
[19] of C(xg, t 4+ dt) andV (xg, t 4 dt).

DNS of the HSF is performed with the initial parameté&go= 16, up=0.02, and
ko =6 (see Eq. (54)), which correspond to an initial dissipation ¢&® =2.76 x 104,
Taylor microscale.g = 0.0239, Kolmogorov length scalg = 0.003133, integral length
scaleLo=0.05123, and kinematic viscosity=2.981x 10-°. The dimensionless grav-
itational acceleration is prescribgp=1. The reference length and time scales used i
normalizing the above dimensionless quantitieslage=0.098 m andT,= 0.1 sec, re-
spectively. The simulation continues to a dimensionlesstim8. In the one-way coupling
caseC’ is set equal to zero in the last term in Eq. (46), thus eliminating the effects of t
bubbles on the carrier flow.

The flow shear number [16Fh is defined as

SE

Sh , (57)
€

whereE=0.5 Zigzl(UF) is the turbulence kinetic energy, awrdis its dissipation rate:
€=v zﬁjzl(aui /9%j)%. The shear number equals 2.14 at0 and increases to 6.1 at the
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end of the simulation, d@t= 8. Bubbles are injected into the flow at time- 0.75, when the
shear number equaBh=2.54 (denoted aSh in Figs. 7-13).

Note that the time =8 equals about 5/ (whereT, =~ u3/e is the turbulence inte-
gral time scale) and 2¢ (for 7y = 0.31, the Kolmogorov time scale of the turbulence at
t =0). Thust =8 equals about 27 turn-over times of a dissipative eddy, and the prod
Shyt =20.32 (fort =8) is larger than$h i = 14) in the DNS of HSF reported by Kida
and Tanaka [17] and, recently, by Mashayek [18].

Figure 7 shows the temporal development of the turbulence rms velocity component
thex, y, andzdirections (i = (UZ)*2, uz = (UZ)"/2, anduz = (U2)*/?), and the dissipation
rate of the turbulence kinetic energy, The expected anisotropy of turbulence [14—17] is
evidenced by the monotonic increase of the horizontal rms velocity compongraad
u,, after the initial decay period, whereas the vertical componentis suppressed, so
thatu; > u, > uz for t > 0.8. This anisotropy is consistent with the mechanism of vorte;
generation described by Kida and Tanaka [17].

Note that the growth rates of the rms velocity and the turbulence energy dissipation r
¢, depend strongly on the shear numlistr,ForSh>> 1, bothu; ande increase exponentially
[16]. In the DNS of HSF by Mashayek [18] withh= 2, a linear growth of the turbulence
kinetic energy,E =0.5%"; u?, is observed foiSht< 10, and a slower growth oE at
later times. In our DNS (witlfShy =2.54), ¢ andus increase fott > 3.7 (or Shyt > 9.4)
approximately a$ after an initial transient decay, whereas the compongrasdu, grow
linearly with time fort > 2, so that the turbulence kinetic energy grows?as

Figure 8 shows the temporal development of the Reynolds nuiRbgthe Kolmogorov
length scale), and skewness of the velocity derivati&k defined as

3

(@U)?)
58
IZ [@unp)> %

The figure shows that, after an initial transient ded?g, increases to a value:37 at

Sh,=2.54

50E-04 € Uios —o04
4.0E-04
3.0E-04

2.0E-04

1.0E-04

0.0E+000_‘."|,,..|...,|.,,.|...,|,.‘.|‘.Hl...,-o

FIG. 7. Temporal development of the turbulence dissipation rajeafd the rms velocity components
(U= (U2, up = (U2)Y2, us = (U2)"/?) in the homogeneous turbulent shear flows 8 corresponds t&ht =
20.32.



LAGRANGIAN-EULERIAN MAPPING SOLVER 191

Sh,=2.54
10°
@ 10 3
10°F
- {1, T --—-—-—-—- 77 B
010"
!
N
107l
E
= [
10°F
10 1 [ T | 1 1 1
0 1 2 3 4 5 6 7 8

FIG.8. Temporal development of the turbulence Kolmogorov segl|, dotted line), skewnesS§k(in dashed
line), and microscale Reynolds numbRrg, (in solid line), in the homogeneous turbulent shear flow.

t = 8. The ability of the simulation to resolve the motion at the smallest turbulence sca
is assured by the criterionkmax> 1, wherekmax= Ng7 is the highest resolved wave
number for the given grid spacing\& =1/Ng). In our caseypkmax> 1.0 throughout the
simulation.

The skewness reaches its first pe8k~0.326 att =0.75, when a fully developed
turbulence is established. Therefore, in our DNS we ches®.75 as the time of the
injection of bubbles into the flow.

The dimensionless bubble diametigr= 0.00242, and the dimensionless response tim
72>~ 0.00548. At the injection timet (= 0.75) the Kolmogorov length and time scales are
n=0.003464 and, = 0.3813, and thus the bubble diameter and response tindlg ar6.7n
andt, ~ 0.0144; the dimensional bubble diameterds ~ 240.m. The bubble initial
concentration in this simulation is unifori@(t = 0.75) = «g, and is assumed small enough
(e.g.,c0=10"%) to neglect the influence of the bubbles on the carrier flow. Note that tl
value ofag is relevant only in the two-way coupling case, since Eq. (49) is integrated wi
C’ normalized byxg. The initial bubble velocity is prescribed as

Vi = Ui + Wiz, (59)

whereW is the bubble terminal velocity (34). Our numerical results show that the bubt
Reynolds number remains less than 1 throughout the simulation. Therefore, we satisfy
conditions of validity of the bubble equation of motion (48) (cf. [1]).

Figures 9 and 10 show respectively the contours of turbulence enstrophy and bul
concentration in anx z)-plane, aty=0.5, att =6. Figure 9 shows that intense vortex
layers are created, inclined at°1t® 30° to the downstream, and dominate the flow field.
This flow structure is in agreement with that obtained by Kida and Tanaka from their DI
[17]. In order to ensure that thelength of the computational domain is large enougt
to satisfy the imposed periodic boundary condition in xhdirection without artificially
distorting the flow structure, we evaluated the two-point instantaneous velocity correlat
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FIG.9. Contoursofthe turbulence enstrophy inthe homogeneous turbulent shear flontatténeormalized
by the maximum value? = 32.22.

coefficients,

(Ui (X +To, ¥, 2 DU (X, ¥, 2, D) /[(Ui (X + To, ¥, 2 D2 (Ui (x, v, 2 2)]

as a function of the separation distance inxkdirection ro, between the points. Our results
show that the velocity correlation coefficients vanishrfpx 0.5, indicating that the vortex
structures are not distorted by the) periodic boundary condition.

Figure 10 shows that the bubble-phase concentration becomes non-uniform owing tc
preferential accumulation of bubbles in the oblique vortex layers dominating the cart
flow structure.

Figure 11 shows the temporal development of the normalized bubble concentration v
ance(C"?)Y2/ay, and maximum modulus of the concentration gradi€¢Vi€|y,/ao. The
figure shows thatC'?) increases monotonically owing to the bubble accumulation. We al
deduce from the figure that the effect numerical diffusion remains negligible and does
degrade the rapid growth ¢¥C|n/ao.

1,=0.01441,, d,=0.7n, t=6 oc.
091
(Sh,=2.54, 1-way) ! o

FIG. 10. Contours of the bubble concentration, normalized by the maximum \@jue 1.345¢, in the
homogeneous turbulent shear flow at time6. The corresponding turbulence enstrophy field is shown in Fig. 9
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FIG. 11. Temporal development of the bubble concentration varianCé,)?/a, (solid line), and the
maximum modulus of the concentration gradief,C|,/oo (dahsed line), normalized by the reference
concentrationgg.

Figure 12 shows a band-averaged spectrg(k), of the concentration fluctuation

defined as
Eck)= > [C'k b (60)
k<k<k+1

at timet = 6. The figure shows thd: (k) increases withk owing to the bubble preferen-
tial accumulation and the growth of the concentration gradients (cf. Fig. 11) and has
cut-off at high wave numbers. This behaviorf (k) confirms that the effects of numerical
diffusion in the DNS remain negligible. On the other hand, for the considered time inten
(0 <t <8), we do not observe any numerical instability, which would cause an explosi
growth of Ec (k) for largek. Such instability may occur at later times due to decreasin

Shy=2.54, d,=0.7 1, t=6 (1-way)
Ec(k)

T ERTTRIN [T T U [ SN SR SRR SN SRR S N ST
10 20 30 40
k

FIG. 12. Spectrum of the bubble concentration fluctuatiBag,
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Kolmogov length scaleg and the resulting insufficient resolution (fkk.n < 1). In the
present simulatiorkmaxn = 1.08 att = 8.

In order to examine the performance of LEM in the DNS of HSF with two-way coupling
we consider three cases with different initial bubble concentration profiles mdhection,
but with the same bubble response time as in the one-way coupling case.

The first case is for a uniform initial bubble concentration,

C(t = 0) = ap, (61)

whereqg is a reference concentration set equal to 502 to neglect bubble—bubble inter-
actions.

The second case is for stable linear stratification, with a constant concentration grac
in the vertical £) coordinate,

Czt=0=al+%2, &S=1 (62)

while the third case is for unstable linear stratification,
C(z,t=0) = a2+ X2, < =-1 (63)

Inthe cases of stabl& = 1) and unstableg: = —1) stratification, shear-periodic bound-
ary conditions in the-direction are imposed on the instantaneous concentration fluctuati
C’'=C—Cy(z t), whereCy(z, t) is the instantaneous mean concentration in a gixeny)
plane. The simulation is continuedtte- 6.

Figure 13 shows the temporal development of the turbulence kinetic energy rela
difference €2, — E1,)/E1, due to the two-way coupling (where the subscripis énhd
1w denote respectively two-way and one-way coupling). The figure shows that, as expe
[1], E2w(t) is reduced compared y,, (t) in the case of stable stratification and increase
for unstable stratification. In the non-stratified case, the modificatidb(bf compared to
the one-way coupling case is negligible.

db=0.7n, Sh0=2.54 (2-way,a0=0.005)
Ezw'Ew/Em

0.04 - - S

5,200

0.02 R

0.00 —
-0.02 }- ~ .
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FIG. 13. Temporal development of the modification of the turbulence kinetic energy in the homogenec
turbulent shear bubble-laden flow.
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In the simulations with both one- and two-way coupling, the volume integr@l ofer
the computational domain is conserved with accura@y2%. A typical run until timg =8
of the DNS using TF-LEM solver takes one CPU-hour on Cray-T90. This is at least o
order of magnitude less than the amount of CPU-time required for the same simula
using the trajectory approach.

IV. CONCLUDING REMARKS

We have developed a Lagrangian—Eulerian mapping solver (LEM) for direct numeri
simulations (DNS) of particle-laden turbulent flows using the two-fluid formulation (TF
The motivation for using TF in DNS of particle-laden flows is that it reduces significant
the required CPU-time and storage memory, as compared to the trajectory approach [

In order validate the new method, we performed DNS with TF-LEM of three differel
flows: a bubble-laden Taylor—Green vortex, a two-dimensional, spatially developing m
ing layer, and a three-dimensional homogeneous shear turbulent flow. The results s
that LEM is superior to the standard finite-difference scheme (FDS) for the intergation
the equations for the bubble velocity and concentration. In the case of sufficiently la
bubbles (i.e., whose response time is large enough), FDS is not capable of resolvinc
large gradients of the bubble-phase velocity and concentration. These gradients are cr
by nonlinear advection as well as preferential accumulation, causing the developmer
numerical instability in the absence afiy diffusion terms in the equations of motion of
the bubble phase. In contrast, LEM resolves the gradients of the velocity and concentre
without creating numerical instability, even if the bubbles added-mass inertia is signific
and their preferential accumulation is well pronounced.
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