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In a recent study we showed that the two-fluid (TF) formulation can be used in the
direct numerical simulation (DNS) of bubble- (or particle-) laden decaying isotropic
turbulence with considerable saving in CPU-time and memory as compared to the
trajectory approach employed by many researchers. In the present paper, we develop
a Lagrangian–Eulerian mapping (LEM) solver for DNS of bubble-laden turbulent
shear flows using TF. The purpose of LEM is to resolve the large gradients of bubble
velocity and concentration which result from the absence of the diffusion terms in
the equations of bubble-phase motion and the preferential accumulation of bubbles.
A standard finite-difference scheme (FDS) fails to resolve these gradients. We ex-
amine the performance of the new method in DNS of a bubble-laden Taylor–Green
vortex, spatially developing plane mixing layer, and homogeneous shear turbulent
flow. c© 1999 Academic Press
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I. INTRODUCTION

In a recent study [1] we used the two-fluid (TF) approach in direct numerical simulations
(DNS) of a decaying isotropic turbulence laden with microbubbles. The TF approach treats
each phase as a continuum with its own continuity and momentum equations. TF is an
alternative to the trajectory approach commonly used in DNS of particle-laden flows [2].
The motivation for using TF in DNS of particle-laden flows is that it reduces considerably
the required CPU-time and memory, as compared to the trajectory approach.
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The implementation of TF formulation in DNS of particle- (or bubble-) laden turbulent
shear flows may be limited by the large gradients of concentration of particles due to
their preferential accumulation. Itis well known that heavy particles, due to their inertia,
accumulate in the low-enstrophy regions of the flow [3–5]. On the other hand, bubbles with
negligible mass but with added-mass inertia, accumulate in the high-enstrophy regions,
generally associated with the centers of vortices [3]. This preferential accumulation creates
regions devoid of bubbles neighboring regions of high bubble concentration and hence large
gradients of concentration. The inability of a standard finite-difference scheme (FDS) to
resolve these large gradients produces numerical instability and erroneous results. Another
source of numerical instability is the presence of the nonlinear advection terms and the
absence of the diffusion terms in the equation for the bubble-phase velocity. The nonlinear
advection creates large gradients of bubble-phase velocity which are similar to those in
the shock-wave solution of the inviscid Burgers equation [6]. The large gradients of the
bubble velocity and concentration cause numerical resolution and stability problems when
performing DNS with the TF formulation using FDS in solving the governing equations for
the bubble-phase velocity and concentration.

In our study [1] we considered microbubbles, whose diameter,db, is smaller than the
Kolmogorov length scale,η (to satisfy the necessary conditions for deriving the exact equa-
tions of bubble motion) and their response time,τb, is much smaller than the Kolmogorov
time scale,τk. We showed that under these conditions, the preferential accumulation of
bubbles in decaying isotropic turbulence is negligible. Thus, large gradients of bubble con-
centration and velocity are not created, and FDS can be successfully used in DNS/TF.

In the present paper, we develop a Lagrangian–Eulerian mapping solver (LEM) to per-
form DNS of bubble-laden flows using the TF formulation. The purpose of LEM is to
resolve the large gradients of the bubble-phase velocity and concentration that are created
by nonlinear advection and preferential accumulation in the absence of the diffusion terms
in the equations of the bubble-phase motion. We examine the performance of LEM in DNS
of three bubble-laden flows: Taylor–Green vortex, a plane spatially developing mixing
layer, and a homogeneous shear turbulent flow. We consider bubbles with sufficiently large
added-mass inertia and show that FDS is not capable of resolving the bubble-phase velocity
and concentration, whereas LEM is.

The paper is organized as follows. The LEM solver is described in Section II. Section III
examines the performance of LEM and compares it with that of FDS in DNS of a bubble-
laden Taylor–Green vortex, a plane spatially developing mixing layer, and a homogeneous
shear turbulent flow. Concluding remarks are presented in Section IV.

II. LAGRANGIAN–EULERIAN MAPPING SOLVER

FOR A PARTICLE-LADEN FLOW

In this section we develop the LEM solver as a general method for the intergation of
the conservation equations of mass and momentum of the dispersed phase (solid particles,
liquid droplets, or gaseous bubbles). Hereinafter, the dispersed phase will be denoted as
particles, unless stated otherwise. In the following sections, we examine the performance
of LEM in DNS of bubble-laden flows only.

According to the two-fluid (TF) formulation [1], the conservation equations of the
particle-phase momentum and mass can be written in the general form,

∂t Vi + Vj ∂ j Vi = Fi (V,U, r, t), (1)
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FIG. 1. Mapping of the Eulerian grid,r(t)= xg, on the Lagrangian gridr(t + dt)= xg+ dr. At time t = 0 the
Lagrangian grid nodes (empty circles) coincide with the Eulerian grid nodes (filled circles in (a)). At timet + dt,
the Lagrangian grid nodes are shifted with respect to the Eulerian grid nodes (b).

∂tC + ∂ j (CVj ) = 0, (2)

where∂t ≡ ∂/∂t and∂ j ≡ ∂/∂xj , and the term on the rhs of (1) describes the force acting
on the particle. The fluid velocity,U(r, t), at a given timet is assumed to be a known
field obtained by the integration of the Navier–Stokes equations.V(r, t) andC(r, t) are the
particle-phase velocity and concentration, respectively.

As discussed earlier in the Introduction, large gradients ofV andC are created due to the
nonlinear advection as well as the preferential accumulation of particles and the absence of
the diffusion terms in Eqs. (1) and (2). These large gradients often render a stable numerical
solution of (1) and (2) impossible in DNS using a standard finite-difference scheme (FDS).
In order to overcome this problem, we developed an Eulerian–Lagrangian mapping (LEM)
solver to integrate Eqs. (1) and (2) for the particle velocity and concentration, as described
below.

At a given time step,t , the fieldsC(r, t),V(r, t), andU(r, t) are defined at the Eule-
rian grid nodes with coordinatesr= xg, wherexg={i1x, j1x, k1x}, i = 1, . . . , N, j =
1, . . . , N, k= 1, . . . , N,1x= 1/N (Fig. 1). In order to obtain the velocity,V(xg, t + dt),
and concentrations,C(xg, t + dt), at the next time step (t + dt) at thesameEulerian grid
nodes,xg, the LEM solver proceeds as follows.

First, the time integration of Eqs. (1) and (2) is performed along the characteristicsr(t),
which are defined via

dr
dt
= V(r, t), (3)

with the initial condition at timet ,

r(t) = xg. (4)

The velocityV(r(t + dt), t + dt) is then evaluated via a predictor-corrector scheme as

V∗ = V(xg, t)+ dt F(xg, t),
(5)

V(r(t + dt), t + dt) = V(xg, t)+ 1

2
dt(F∗ + F(xg, t)),

where

F∗ = F(U,V∗, xg, t). (6)
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The concentration,C(r(t + dt), t + dt), is also evaluated via a predictor-corrector
scheme as

C∗ = C(xg, t)− dt C(xg, t) div V(xg, t),
(7)

C(r(t + dt), t + dt) = C(xg, t)− 1

2
dt[C(xg, t)+ C∗] div V(xg, t).

Now the velocity,V, and concentration,C, are defined via Eqs. (5) and (7) at Lagrangian
grid nodes with coordinatesr(t + dt) given by

r(t + dt) = xg + dr, (8)

where the displacementdr is obtained by time integration of Eq. (3) as

dr = 1

2
dt[V(r(t + dt), t + dt)+ V(xg, t)], (9)

with the initial condition (4). Equations (3), (4), (8), and (9) define a mapping of the
Eulerian grid,xg, onto a Lagrangian grid,xg+ dr (see Fig. 1). Now the desired velocity
and concentration can be evaluated at the Eulerian grid nodes via interpolation.

In order to retain the second-order accuracy of the solver, we prescribe the time step,dt,
small enough, so that

u0dt ∼ (1x)2, (10)

whereu0 is a characteristic magnitude of the velocity fieldU (e.g., turbulence rms velocity).
Then, the displacement modulus|dr| ' u0dt, and

|dr| ∼ (1x)2. (11)

Note also that, for1x ¿ 1, (10) ensures that the CFL stability condition is satisfied in the
integration of the Navier–Stokes equations for the fluid velocity.

Now we obtain the particle concentration,C(xg, t + dt), and velocityV(xg, t + dt), at the
Eulerian grid nodes (xg) using fieldsC(r(t + dt), t + dt) andV(r(t + dt), t + dt), defined
at the Lagrangian grid nodes(r(t + dt)), (8) via

C(xg, t + dt) = (1− dr∇)C(r(t + dt), t + dt), (12)

and

V(xg, t + dt) = (1− dr∇)V(r(t + dt), t + dt). (13)

It should be noted that the interpolation (12) makes LEM a non-conservative scheme.
Thus the concentration gradient, defined in (12) on the Lagrangian grid (8) with non-uniform
spacings, should be evaluated with sufficient accuracy. In the DNS of bubble-laden flows
presented in the next section, the gradients of the concentration and velocity are evaluated
using the corresponding values at the Lagrangian grid nodes via central finite differencing
as

∇i C = C(i + 1, j, k, t + dt)− C(i − 1, j, k, t + dt)

21x
(14)
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and

∇i V = V(i + 1, j, k, t + dt)− V(i − 1, j, k, t + dt)

21x
(15)

in a given (i th) direction.
The calculations of the gradients of the velocity and concentration via Eqs. (14) and

(15) are of second-order accuracy in1x due to condition (11). Thus, for (1x)2∼ |dr|, the
interpolation (12)–(15) does not degrade the over-all second-order (both in space and time)
accuracy of the LEM solver.

III. VALIDATION OF LEM SOLVER FOR BUBBLE-LADEN FLOWS

In this section we present the results of DNS using LEM for three different flows laden
with small spherical bubbles: a Taylor–Green vortex, a two-dimensional spatially developing
mixing layer, and a three-dimensional homogeneous shear turbulent flow. Our objective is
to examine the performance of DNS using LEM and to compare the results with those
obtained from DNS using a standard finite-difference scheme (FDS).

We employ TF for the equations of motion of the bubble-phase, and the same assumptions
and physical properties of the bubbles (the bubble gas density and the boundary condition
at the bubble surface) as in our earlier study [1].

A. Bubble-Laden Taylor–Green Vortex

As a first test case, we consider a Taylor–Green vortex (TG) flow laden with bubbles. We
assume that the bubble concentration is small enough, so that they do not affect the carrier
flow (one-way coupling). The governing equations of the conservation of the momentum
and mass for the fluid and bubble phases are [1]:

fluid phase,

DUi

Dt
= − 1

ρ f
∂i P + ν1Ui , (16)

∂ j U j = 0; (17)

bubble phase,

dVi

dt
= 3

DUi

Dt
+ 1

τb
(Ui − Vi ), (18)

dC

dt
= −C∂ j Vj . (19)

In the above equations,Vi andUi are the instantaneous velocities of the bubble-phase and
fluid, andC is the instantaneous bubble concentration. The notations for the total derivatives
areD/Dt = ∂t +U j ∂ j andd/dt= ∂t +Vj ∂ j . The bubble response timeτb is

τb = d2
b

36ν
. (20)

In this test simulation we neglect the effect of the gravity.
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TG-flow [7] represents an exact two-dimensional, time-dependent solution of the Navier–
Stokes equations (16) and continuity equation (17) with the velocity components (Ux, 0,
Uz). The corresponding instantaneous, local stream function can be written as

9(x, z, t) = ω0

k2
exp(−νk2t) coskxx coskzz, (21)

whereω0 is the initial maximum vorticity;kx and kz are the wave numbers inx and z
directions, andk2= k2

x + k2
z. The flow vorticity,ω, and pressure,P, are

ω = ∂Ux

∂z
− ∂Uz

∂x
= −k29, (22)

P = P0− 1

2

[(
∂9

∂x

)2

+
(
∂9

∂z

)2

+ k292

]
. (23)

The fluid velocity components are

Ux = ∂9

∂z
= −ω0

kz

k2
exp(−νk2t) coskxx sinkzz, (24)

Uz = −∂9
∂x
= ω0

kx

k2
exp(−νk2t) sinkxx coskzz. (25)

DNS is performed for a flow Reynolds numberRe= 1/ν= 10000, and an initially uniform
concentration of bubbles. We set the parameterskx = kz= 2π andω0= 1. The initial fluid
pressure and velocity are prescribed by Eqs. (23), (24), and (25) att = 0. The initial velocity
componentsVx andVz of the bubble phase are set equal to those of the surrounding fluid,
and the initial bubble concentration is uniform constant,

Vx = Ux, Vz = Uz, C = α0, (26)

whereα0 is small enough (e.g.,α0= 10−4) to neglect the influence of the bubbles on the
carrier flow as well as the direct interaction between the bubbles.

DNS is performed with two different grids of 96× 4× 96 and 192× 4× 192 points in
thex, y, andz directions, and for two bubble response times,τb= 0.15 and 0.45. Although
the TG flow considered here is essentially two-dimensional, the numerical method uses a
3D-algorithm, where the flow is homogeneous iny-direction. The integration is performed
with time step1t = 0.51x, where cell size1x= 1/Ng and Ng= 96 or 192 for the two
different meshes.

Figure 2 shows the contours of the enstrophy,ω2, and bubble concentration,C (in gray
scale) in an (x, z)-plane obtained from DNS using LEM solver with mesh 192× 4× 192
at timet = 20 for τb= 0.45. The figure shows that, owing to the inertial bias, the bubbles
accumulate at the vortex centers (e.g., points (x= 0, z= 0) and (x= 0.5, z= 0.5)). Con-
sequently, local sharp peaks of the bubble concentration are created at the vortex centers,
where the enstrophy has its local maxima.

The growth of the bubble concentration at the vortex center can be described analytically
provided that the bubble response time is small compared to the flow time scale, i.e.,
(τb/τ f )

2' (τbω0)
2¿ 1. Then, an approximate solution of Eq. (19) for the maximum bubble
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FIG. 2. Contours of the flow enstrophy,ω2/ω2
m (in lines), and bubble concentration,C/Cm (in grey scale),

normalized by the corresponding maximum values,ω2
m= 0.788 andCm/α0= 752, in the Taylor–Green vortex

flow at timet = 20. The increments of the enstrophy contours are equal to those in the table for the concentration.

concentration,Cm, at the vortex center, can be written in the form [1]

Cm = α0 exp

{
2τb

ν

(
ω0

kxkz

k3

)2

[1− exp(−2νk2t)]

}
. (27)

Figure 3a compares the temporal development of the bubble concentration at the vortex
center,Cm(t), normalized by the reference concentrationα0, obtained from the analytical
solution (27) forτb= 0.15 to that of DNS using LEM solver (with meshes 96× 4× 96 and
192× 4× 192) and DNS using FDS (with mesh 96× 4× 96). As expected (for (τbω0)

2=
0.0225¿ 1), the figure shows good agreement between the DNS results and the analytical
solution (27). Also, the difference between the DNS/LEM results of the two meshes is less
than 1%.

In the case of relatively small bubbles (τbω0≤ 0.15), no numerical instability is observed
in DNS using FDS fort ≤ 15. However, the instability occurs for largerτb, when the pref-
erential bubble accumulation becomes more pronounced. Figure 3b compares the temporal
development of the concentration maximum and minimum,CmaxandCmin, obtained in DNS
using LEM and FDS forτb= 0.45. The figure shows that, fort > 10, FDS reduces the growth
rate ofCmax as compared to LEM. The figure also shows that the numerical instability de-
velops in DNS with FDS fort > 15, causing an exponential growth of negativeCmin which
is unacceptable. On the other hand, no numerical instability occurs in DNS using LEM. The
bubble concentration distribution obtained in DNS using LEM at timet = 20 is presented
in Fig. 2. In this case, the difference between the results forCmax from the DNS/LEM with
two different meshes (96× 4× 96 and 192× 4× 192) is of the order of 5% (cf. Fig. 3b).
Thus, in our DNS using LEM the effect of numerical diffusion remains negligible.

As was discussed in Subsection A, LEM solver is not a conservative scheme. Therefore,
as the concentration gradients grow, the conservation of the volume integral ofC over the
computational domain (evaluated as a sum over all grid nodes) should be checked. In the
present test case, this quantity is conserved with an accuracy of 0.1% in the simulation with
τb= 0.15 and 3% in the simulation withτb= 0.45.
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FIG. 3. (a) Temporal development of the maximum bubble concentration in the DNS with LEM solver
(for different meshes) and FDS of the bubble-laden Taylor–Green vortex; bubble response timeτb= 0.15. The
analytical solution for the concentration at the vortex center is in the dashed line. (b) Temporal development of
the maximum and minimum values,CmaxandCmin, of the bubble concentration in the DNS of the bubble-laden
Taylor–Green vortex with LEM solver (for different meshes) and FDS;τb= 0.45.
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FIG. 4. Reference frame and the inflow streamwise velocity profile for a spatially developing plane mixing
layer (SDML).

B. Bubble-Laden Spatially Developing Mixing Layer

Here we test LEM in a two-dimensional spatially developing mixing layer (SDML),
laden with small concentration of bubbles (one-way coupling). In a recent study [8] we
developed a numerical procedure and performed DNS/LEM of a three-dimensional bubble-
laden SDML. Thus in the present paper we consider the two-dimensional case only and
show that FDS is not capable of resolving the bubble-phase velocity and concentration in
this flow, whereas LEM is.

Figure 4 shows the flow geometry and reference frame. The inflow reference streamwise
fluid velocity profile,Uref(z), atx= 0 is prescribed as (Fig. 4)

Uref(z) = 0.5 tanh 2z+ 1.5. (28)

In this case, all the variables are made dimensionless via scaling by the initial vorticity thick-
ness,δ∗ω0, and velocity difference,U ∗+ −U ∗− =1U ∗, whereU ∗+ andU ∗− are the velocities
of the high- and low-speed streams. The corresponding dimensionless velocities (obtained
asU± =Uref(z→ ±∞)) areU+ = 2 andU− = 1, and the initial dimensionless vorticity
thickness is

δω0 = 1U

dUref/dz

∣∣∣∣
z=0

= 1. (29)

In this case, the governing dimensionless equations of the conservation of the momentum
and mass for the fluid and bubble phases are:

fluid,

DŨ i

Dt
+Uref ∂xŨ i + Ũ zδi x

dUref

dz
= − 1

ρ f
∂i P + ν

(
δi x

d2Uref

dz2
+ ∂2Ũ i

)
, (30)

∂ j Ũ j = 0; (31)

bubble phase,

dṼ i

dt
+Uref ∂xṼ i + Ṽ zδi x

dUref

dz

= 3

(
DŨ i

Dt
+Uref ∂xŨ i + Ũ zδi x

dUref

dz

)
+ 1

τb
(Ũ i − Ṽ i +Wδi z), (32)
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dC

dt
+Uref ∂xC = −C∂ j Ṽ j . (33)

In the above equations,̃Ui andṼ i are the deviations of the instantaneous fluid and bubble-
phase velocities from the reference profileUref. The dimensionless viscosity is set equal
to ν= 1/Re whereRe=1U ∗δ∗ω0/ν

∗ is the Reynolds number based on the dimensional
velocity difference1U ∗, the initial vorticity thickness,δ∗ω0, and fluid kinematic viscosity,
ν∗. The notations for the total derivativesD/Dt andd/dt are similar to those in Eqs. (16)–
(19), and the bubble response time,τb, is defined in (20). The bubble terminal velocity,W,
is defined as

W = 2τbg, (34)

whereg is the projection of the dimensionless gravity acceleration on thez- axis, gi =
−gδi z. In our DNS, we prescribeg= 1.

1. Numerical method for the carrier flow.In order to perform DNS in a finite compu-
tational domain which corresponds to a physical domain infinite in the vertical (z) direction
(Fig. 4), and to resolve the mixing layer core zone with sufficient accuracy, a mapping for
z-coordinate is introduced in the form

ξ = tanh
z

8
, (35)

and

z= 4 ln

(
1+ ξ
1− ξ

)
, (36)

so that−1≤ ξ ≤ 1 corresponds to−∞< z<∞. Thus, the partial derivatives with respect
to z in Eqs. (30)–(33) are expressed as

∂

∂z
=
(

1− ξ2

8

)
∂

∂ξ
. (37)

Accordingly, the reference velocity (28) and its first and second derivatives are obtained as
explicit functions ofξ according to (35) and the equality (tanh 2z= 2 tanhz/(1+ tanh2 z)).

Although the flow is uniform in they-direction, we use a three-dimensional numerical
procedure, developed in our recent study [8], to solve the momentum conservation and con-
tinuity equations (30)–(33) in a parallelpiped computational domain whose dimensionless
sides are 0≤ x≤ 80, 0≤ y≤ 0.667, and−1≤ ξ ≤ 1. Equations (30) and (31) for the fluid
phase are discretized in an Eulerian framework using a second-order finite-differencing on
an equispaced staggered grid containingNx = 480 points in thex-direction,Ny= 4 in the
y-direction, andNz= 96 in thez(ξ)-direction.

The mean advection terms,Uref ∂xŨ i , are evaluated using a second-order upwind dif-
ferencing scheme [9]. A second-order Adams–Bashforth scheme is used to integrate the
equations in time. Pressure is obtained by solving its Poisson equation via a cosine transform
(employing FFT [10, 11]) in thex-direction, using FFT in they-direction, and Gaussian
elimination in thez(ξ)-direction [12].
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Standard periodic boundary conditions for the velocity components, pressure, and the
bubble concentration are imposed in the spanwise (y) direction. The Neumann’s (stress-free)
conditions are imposed in thez(ξ)-direction as

∂φ

∂ξ
= 0, atξ = ±1, (38)

whereφ denotes the bubble and fluid velocities, pressure, and the concentration.
Two different boundary conditions are imposed in the streamwise (x) direction, at the

inflow (y− z) plane,x= 0, and outflow plane,x= 80.
At the inflow plane (x= 0), forcing is used to initialize the spanwise vortex rollup [9].

Thus the unsteady fluid velocity components atx= 0,U f
x (z, t) andU f

z (z, t), are composed
of the product of harmonic functions of time and the eigenfunctions of the most unstable
(fundamental) model with frequencyÄ0= 4/3, and its first and second subharmonics,
Ä1,2. The eigenfunctions are obtained by solving the two-dimensional Rayleigh-equation
eigenvalue problem for each of the three frequenciesÄ0,1,2. We follow the proposal of
Sandham and Reynolds [13] and include random-walk phases in the forcing functions to
simulate a natural mixing layer. All modes are forced at an amplitude of 0.02.

The inflow bubble concentration is uniform constant,C(x= 0, y, z)=α0, and the inflow
bubble velocity is set equal to the instantaneous local fluid inflow velocity.

At the outflow plane (x= 80), a time-dependent, advection condition is imposed as

∂tφ +Ua∂xφ = 0, (39)

whereφ denotes the velocities̃Ui , Ṽ i , and concentrationC, andUa= (U+ +U−)/2= 1.5
is the nominal speed of the vortex structures [9] (defined as an average of the high- and
low-speed stream velocities,U+ = 2 andU− = 1).

2. Testing LEM solver in DNS of the bubble-laden SDML.We integrate Eqs. (32)
and (33) in two steps. First, we integrate (32) and (33) using LEM solver, without taking
into account the advection terms due to the reference velocity,Uref ∂xṼ i andUref ∂xC. The
resulting equations are

dV̂ i

dt
= −Ṽ zδi x

dUref

dz
+ 3

(
DŨ i

Dt
+Uref ∂xŨ i + Ũ zδi x

dUref

dz

)
+ 1

τb
(Ũ i − Ṽ i +Wδi z),

(40)

dĈ

dt
= −C∂ j Ṽ j , (41)

whereV̂ i andĈ denote the intermediate values of bubble-phase velocity and concentration,
respectively.

At the second step, we account for the advection terms due to the reference velocity, i.e.,
the second term on the lhs of both Eqs. (32) and (33). Thus we evaluate the bubble velocity,
Ṽ, and concentration,C, at the upstream position from where they are advected by the mean
velocityUref (in thex-direction) during the time stepdt as

Ṽ i = V̂ i −Uref ∂xV̂ i dt, (42)
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and

C = Ĉ −Uref ∂xĈdt, (43)

where the gradients of̂Vi andĈ are evaluated via a second-order upwind differencing [9].
DNS of SDML is performed for Reynolds numberRe= 400 with time step1t = 0.11x =

1/60. The instantaneous fluid velocity field,Ũ i , i = x, y, z, at timet = 0 is set equal to zero
throughout the computational domain. In order to minimize the influence of the initial
conditions and the transient fluid motion, we compute only the fluid velocity field until
time t = 80 from Eqs. (30) and (31). By this time, the initial flow-field is “washed” out of
the computational domain by the mean advection, and the carrier flow can be regarded as
nearly stationary. Att = 80 we inject bubbles into the flow and start solving Eqs. (32) and
(33) for the bubble-phase velocity and concentration together with Eqs. (30) and (31) for
the carrier fluid velocity. The initial bubble concentration is uniform constant throughout
the computational domain,C(t = 0)=α0, whereα0 is small enough to neglect the influence
of the bubbles on the carrier flow (e.g.,α0= 10−4).

The bubble response time is prescribed asτb= 0.05. Thus the dimensionless bubble
diameter,db= (36ντb)

1/2 ' 0.015, whereν= 1/Re, Re= 400, so that the conditiondb ¿
δω0= 1 is satisfied. The dissipation length scale of the flow,ldiss, is estimated asldiss '
1/(Reωmax)

1/2. The vorticity maximum is of the orderωmax' 1 throughout the simulation,
so thatldiss ' 0.05. Therefore, the bubble diameter is smaller than the flow dissipation
scale, and much smaller than the initial layer vorticity thickness;db< ldiss¿ δω0. Thus the
two-fluid formulation is justified in this case. Our numerical results show that the bubble
Reynolds number remains less than 1 throughout the simulation. The conditionsReb< 1
anddb< ldiss are consistent with the assumptions used in deriving the equation of motion
of the bubble phase (32).

The initial bubble velocity at any location is set equal to the local instantaneous fluid
velocity,

Ṽ i = Ũ i . (44)

Figure 5 compares the temporal development of the absolute instantaneous maxima of the
modulus of the divergence of the bubble velocity,|div V|m, and the concentration gradient,
|∇C|m, obtained from DNS with LEM and FDS. The figure shows that in the DNS with
FDS, numerical instability in the velocity of the bubble phase develops shortly after the
injection of bubbles into the flow. The instability is first manifested in the exponential
growth of|div V|m (for t ' 80.15) and consequently causes an explosive growth of|∇C|m
for t > 80.5. Thus, in this flow, thenonlinear advectionof the bubble velocity and the
absence of the diffusion terms on the rhs of Eq. (32) triggers the instability. Note also that
applying random phases in the forcing at the inflow plane (x= 0), U f

x (z, t) andU f
z (z, t),

facilitates the development of the instability in DNS using FDS. On the other hand, DNS
using LEM does not suffer from any numerical instability (cf. Fig. 5).

Figure 6a shows the instantaneous contours ofωy, the y-component of the vorticity (in
grey scale) at three different times,t = 85 (i), t = 90 (ii), and t = 95 (iii). This vorticity
component,ωy, is obtained from the instantaneous fluid velocity fieldŨ i according to

ωy = dUref

dz
+ ∂zŨ x − ∂xŨ z. (45)
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FIG. 5. Temporal development of the maxima of the modulus of the divergence of bubble velocity,|div V|m,
and the concentration gradient,|∇C|m/α0, in the DNS with FDS and LEM of the bubble-laden SDML.

The figure shows the vortex pairing and rollup, enhanced by forcing at the subharmonic
frequencyÄ1. Comparing the locations of the rollers in Fig. 3 ((i)–(iii)) shows that the
rollers are advected with velocityUa= 1.5. Note also that the vortices exit the domain
naturally, without being distorted, thus confirming the accuracy of the advection boundary
condition (39) at the outflow plane (x= 80).

Figure 6b shows the bubble concentration obtained in DNS with LEM for the same times
(t = 85, 90, 95) as in Fig. 3a. The figure shows that bubbles, due to their added-mass inertia,
accumulate in the centers of the (ωy) rollers. In this simulation, the intergal of the bubble
concentrationC over the computational domain is conserved with accuracy'0.1%.

C. Bubble-Laden Homogeneous Shear Turbulent Flow

The results of DNS of bubble-laden TG and SDML in the preceding sections show that
LEM is capable of capturing the effects of the bubble preferential accumulation without
creating numerical instabilities. As a further validation of the performance of LEM, we study
in this section a bubble-laden homogeneous shear turbulent flow (HSF). The homogeneous
shear is implemented via prescribing a mean fluid velocityUref= (Sz, 0, 0), whereS is
the dimensionless velocity gradient in thez-direction. We consider both one-way and two-
way coupling cases, where the latter allows the bubble-phase motion to affect that of the
fluid.

The dimensionless equations of the conservation of momentum and mass for the fluid
and bubble phases are [1]:

fluid phase,

DUi

Dt
+ Sz∂xUi +UzSδi x = − 1

ρ f
∂i P̃ + ν1Ui + C′gδi z, (46)

∂ j U j = 0; (47)
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FIG. 6. (a)ωy-vorticity contours of the two-dimensional spatially developing mixing layer at different times,
t = 85 (i), t = 90 (ii), andt = 95 (iii). Vorticity maxima areωm= 1.14, 1.03, and 1.12, respectively. (b) Bubble
concentration contours in the two-dimensional spatially developing mixing layer at different times,t = 85 (i),
t = 90 (ii), and t = 95 (iii). Concentration maxima areCm= 1.4α0 (i), Cm= 1.6α0 (ii), and Cm= 2.12α0 (iii),
respectively.
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bubble phase,

dVi

dt
+ Sz∂xVi + VzSδi x = 3

(
DUi

Dt
+ Sz∂xUi +UzSδi x

)
+ 1

τb
(Ui − Vi +Wδi z), (48)

dC′

dt
+ Sz∂xC′ = −(C′ + C0)∂ j Vj − SC(Vz−W). (49)

In the above equations,Ui andVi are the deviations of the instantaneous fluid and bubble-
phase velocities from the reference mean profile,Uref(z), andC′ is the instantaneous devi-
ation of the bubble concentration,C, from the instantaneous mean concentration in a given
(x− y) plane,C0(z, t), i.e.,

C′ = C − C0(z, t). (50)

The modified hydrostatic part of the pressure field,P̃ in Eq. (46) is defined by using the
analogy between the bubbly flow and a stratified flow with density(1−C0(z, t))ρ f ,

P̃ = P + ρ f g
∫ z

0
(1− C0) dz, (51)

whereP is the dynamic pressure. The initial reference bubble concentration,C0(z, 0), is
either uniform or has a constant gradient, i.e.,∂zC0= SC, whereSC =−1, 0, and+1. Thus,
the instantaneous mean concentrationC0(z, t) can be obtained by manipulating Eq. (49)
and the transport equation ofC(r, t) according to

C0(z, t) = C0(z, 0)−Wt SC. (52)

1. Numerical method for the carrier flow simulation.The three-dimensional momen-
tum conservation and continuity equations (46)–(49) are solved in a parallelpiped domain
0≤ x≤ 2, 0≤ y≤ 1, 0≤ z≤ 1. Equations (46) and (47) for the fluid phase are discretized in
an Eulerian framework using a second-order finite-difference technique on an equispaced
staggered grid containingNg= 96 points in each ofy- and z-directions and 2Ng= 192
points in thex-direction. The imposed mean velocity gradient is in thez-direction. The
mean advection terms,Sz∂xUi , are evaluated using discrete Fourier interpolation. A sec-
ond order Adams–Bashforth scheme is used to integrate the equations in time with step
1t = 0.51x,1x= 1/Ng. Pressure is obtained by solving its Poisson equation via a fast
Fourier transform in thex- and y-directions and Gaussian elimination in thez-direction.
Standard periodic boundary conditions for the velocity components and pressure are im-
posed in thex- and y-directions. In thez-direction (the direction of the imposed mean
velocity gradient) a shear periodic boundary condition is used. The shear periodic bound-
ary condition for any variablef (t, x, y, z) is prescribed as

f (t, x + 2m1, y+m2, z+m3) = f (t, x − Sm3t, y, z), (53)

wheremi are integer numbers. More details about the numerical method and its accuracy
are discussed by Gerzat al. [19].

We use an initialization algorithm to generate a divergence-free isotropic random fluid
velocity field with a prescribed energy spectrumE(k) and spectral cross-correlations matrix
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of the velocity, satisfying the realizability constrains [20]. The initial energy spectrum is
prescribed by

E(k, 0) = 3u2
0

4π

k

k2
p

exp

(
− k

kp

)
, (54)

whereu0 is the dimensionless rms velocity,k is the wave number,k2= k2
x + k2

y+ k2
z, where

kx = 0.5, 1., 1.5, . . . , Ng/2, ky= 1, 2, . . . , Ng/2, kz= 1, 2, . . . , Ng/2, andkp is the wave
number of peak energy. The wave numbers are normalized byk∗ = 2π . The dimensionless
kinematic viscosityν is calculated from the prescribed initial microscale Reynolds number
Reλ0 and the computed initial dissipationε(0).

2. LEM solver for the bubble-laden HSF.In the case of HSF, we perform the integration
in two steps. In the first step, we integrate (48) and (49) using LEM solver, without taking
into account the mean advection terms,Sz∂xVi and Sz∂xC′. In the second step, we use
Fourier interpolation in evaluating the bubble velocity and concentration at an upstream
position where the bubble is advected by the mean velocitySz(in thex-direction) during
the time stepdt.

Thus in the first step the LEM solver evaluates the intermediate bubble velocity,V̂, and
concentration,̂C, via solving the following two equations:

dV̂ i

dt
= 3

(
DUi

Dt
+ Sz∂xUi +UzSδi x

)
+ 1

τb
(Ui − Vi +Wδi z)− VzSδi x , (55)

dĈ

dt
= −(C′ + C0)∂ j Vj − SC(Vz−W). (56)

In this first step, LEM obtains the intermediate velocityV̂(xg, t + dt), and concentration
Ĉ(xg, t + dt), defined on the Eulerian grid.

In the second step (where LEM is not involved), we account for the mean advection
terms (second term on lhs of both Eqs. (48) and (49)). Thus we evaluate the bubble velocity,
V, and concentration,C′, at the upstream position from where it is advected by the mean
velocitySz(in thex-direction) during the time stepdt using a discrete Fourier interpolation
[19] of Ĉ(xg, t + dt) andV̂(xg, t + dt).

DNS of the HSF is performed with the initial parametersReλ0= 16, u0= 0.02, and
kp= 6 (see Eq. (54)), which correspond to an initial dissipation rateε(0)= 2.76× 10−4,
Taylor microscaleλ0= 0.0239, Kolmogorov length scaleη0= 0.003133, integral length
scaleL0= 0.05123, and kinematic viscosityν= 2.981× 10−5. The dimensionless grav-
itational acceleration is prescribedg= 1. The reference length and time scales used in
normalizing the above dimensionless quantities areLref= 0.098 m andTref= 0.1 sec, re-
spectively. The simulation continues to a dimensionless timet = 8. In the one-way coupling
case,C′ is set equal to zero in the last term in Eq. (46), thus eliminating the effects of the
bubbles on the carrier flow.

The flow shear number [16],Sh, is defined as

Sh= SE

ε
, (57)

where E= 0.5
∑3

i=1〈U2
i 〉 is the turbulence kinetic energy, andε is its dissipation rate:

ε= ν∑3
i, j=1(∂Ui /∂xj )

2. The shear number equals 2.14 att = 0 and increases to 6.1 at the
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end of the simulation, att = 8. Bubbles are injected into the flow at timet = 0.75, when the
shear number equalsSh= 2.54 (denoted asSh0 in Figs. 7–13).

Note that the timet = 8 equals about 5.5Te (whereTe ' u2
0/ε is the turbulence inte-

gral time scale) and 27τk (for τk= 0.31, the Kolmogorov time scale of the turbulence at
t = 0). Thust = 8 equals about 27 turn-over times of a dissipative eddy, and the product
Sh0 t = 20.32 (for t = 8) is larger than (Sh tfinal= 14) in the DNS of HSF reported by Kida
and Tanaka [17] and, recently, by Mashayek [18].

Figure 7 shows the temporal development of the turbulence rms velocity components in
thex, y, andzdirections (u1=〈U2

x 〉1/2, u2=〈U2
y 〉1/2, andu3=〈U2

z 〉1/2), and the dissipation
rate of the turbulence kinetic energy,ε. The expected anisotropy of turbulence [14–17] is
evidenced by the monotonic increase of the horizontal rms velocity components,u1 and
u2, after the initial decay period, whereas the vertical component,u3, is suppressed, so
that u1> u2> u3 for t ≥ 0.8. This anisotropy is consistent with the mechanism of vortex
generation described by Kida and Tanaka [17].

Note that the growth rates of the rms velocity and the turbulence energy dissipation rate,
ε, depend strongly on the shear number,Sh. ForShÀ 1, bothui andε increase exponentially
[16]. In the DNS of HSF by Mashayek [18] withSh= 2, a linear growth of the turbulence
kinetic energy,E= 0.5

∑
i u2

i , is observed forSh t< 10, and a slower growth ofE at
later times. In our DNS (withSh0= 2.54), ε andu3 increase fort ≥ 3.7 (or Sh0 t ≥ 9.4)
approximately ast2 after an initial transient decay, whereas the componentsu1 andu2 grow
linearly with time fort > 2, so that the turbulence kinetic energy grows ast2.

Figure 8 shows the temporal development of the Reynolds number,Reλ, the Kolmogorov
length scaleη, and skewness of the velocity derivative,Sk, defined as

Sk= −
√

3
3∑

i=1

〈
(∂i Ui )

3
〉[〈

(∂i Ui )2
〉]3/2 . (58)

The figure shows that, after an initial transient decay,Reλ increases to a value'37 at

FIG. 7. Temporal development of the turbulence dissipation rate (ε) and the rms velocity components
(u1=〈U 2

x 〉1/2, u2=〈U 2
y 〉1/2, u3=〈U 2

z 〉1/2) in the homogeneous turbulent shear flow;t = 8 corresponds toSh0t =
20.32.
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FIG. 8. Temporal development of the turbulence Kolmogorov scale,η (in dotted line), skewness,Sk(in dashed
line), and microscale Reynolds number,Reλ (in solid line), in the homogeneous turbulent shear flow.

t = 8. The ability of the simulation to resolve the motion at the smallest turbulence scales
is assured by the criterionηkmax> 1, wherekmax= Ngπ is the highest resolved wave
number for the given grid spacing (1x= 1/Ng). In our case,ηkmax≥ 1.0 throughout the
simulation.

The skewness reaches its first peak,Sk' 0.326 at t = 0.75, when a fully developed
turbulence is established. Therefore, in our DNS we choset = 0.75 as the time of the
injection of bubbles into the flow.

The dimensionless bubble diameterdb= 0.00242, and the dimensionless response time
τb' 0.00548. At the injection time (t = 0.75) the Kolmogorov length and time scales are
η= 0.003464 andτk= 0.3813, and thus the bubble diameter and response time aredb= 0.7η
andτb ' 0.0144τk; the dimensional bubble diameter isdb ' 240µm. The bubble initial
concentration in this simulation is uniform,C(t = 0.75)=α0, and is assumed small enough
(e.g.,α0= 10−4) to neglect the influence of the bubbles on the carrier flow. Note that the
value ofα0 is relevant only in the two-way coupling case, since Eq. (49) is integrated with
C′ normalized byα0. The initial bubble velocity is prescribed as

Vi = Ui +Wδi z, (59)

whereW is the bubble terminal velocity (34). Our numerical results show that the bubble
Reynolds number remains less than 1 throughout the simulation. Therefore, we satisfy the
conditions of validity of the bubble equation of motion (48) (cf. [1]).

Figures 9 and 10 show respectively the contours of turbulence enstrophy and bubble
concentration in an (x, z)-plane, aty= 0.5, at t = 6. Figure 9 shows that intense vortex
layers are created, inclined at 15◦ to 30◦ to the downstream, and dominate the flow field.
This flow structure is in agreement with that obtained by Kida and Tanaka from their DNS
[17]. In order to ensure that thex-length of the computational domain is large enough
to satisfy the imposed periodic boundary condition in thex-direction without artificially
distorting the flow structure, we evaluated the two-point instantaneous velocity correlation
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FIG. 9. Contours of the turbulence enstrophy in the homogeneous turbulent shear flow at timet = 6, normalized
by the maximum valueω2

m= 32.22.

coefficients,

〈Ui (x + r0, y, z, t)Ui (x, y, z, t)〉/[〈Ui (x + r0, y, z, t)2
〉〈

Ui (x, y, z, t)2
〉]1/2

as a function of the separation distance in thex-direction,r0, between the points. Our results
show that the velocity correlation coefficients vanish forr0≤ 0.5, indicating that the vortex
structures are not distorted by the (x-) periodic boundary condition.

Figure 10 shows that the bubble-phase concentration becomes non-uniform owing to the
preferential accumulation of bubbles in the oblique vortex layers dominating the carrier
flow structure.

Figure 11 shows the temporal development of the normalized bubble concentration vari-
ance〈C′2〉1/2/α0, and maximum modulus of the concentration gradient,|∇C|m/α0. The
figure shows that〈C′2〉 increases monotonically owing to the bubble accumulation. We also
deduce from the figure that the effect numerical diffusion remains negligible and does not
degrade the rapid growth of|∇C|m/α0.

FIG. 10. Contours of the bubble concentration, normalized by the maximum valueCm= 1.345α0 in the
homogeneous turbulent shear flow at timet = 6. The corresponding turbulence enstrophy field is shown in Fig. 9.
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FIG. 11. Temporal development of the bubble concentration variance,〈C′2 〉1/2/α0 (solid line), and the
maximum modulus of the concentration gradient,|∇C|m/α0 (dahsed line), normalized by the reference
concentration,α0.

Figure 12 shows a band-averaged spectrum,EC(k), of the concentration fluctuation
defined as

EC(k) =
∑

k<k<k+1

|C′(k, t)|2 (60)

at timet = 6. The figure shows thatEC(k) increases withk owing to the bubble preferen-
tial accumulation and the growth of the concentration gradients (cf. Fig. 11) and has no
cut-off at high wave numbers. This behavior ofEC(k) confirms that the effects of numerical
diffusion in the DNS remain negligible. On the other hand, for the considered time interval
(0< t < 8), we do not observe any numerical instability, which would cause an explosive
growth of EC(k) for largek. Such instability may occur at later times due to decreasing

FIG. 12. Spectrum of the bubble concentration fluctuation,EC.
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Kolmogov length scaleη and the resulting insufficient resolution (forkmaxη<1). In the
present simulation,kmaxη= 1.08 att = 8.

In order to examine the performance of LEM in the DNS of HSF with two-way coupling,
we consider three cases with different initial bubble concentration profiles in thez-direction,
but with the same bubble response time as in the one-way coupling case.

The first case is for a uniform initial bubble concentration,

C(t = 0) = α0, (61)

whereα0 is a reference concentration set equal to 5× 10−3 to neglect bubble–bubble inter-
actions.

The second case is for stable linear stratification, with a constant concentration gradient
in the vertical (z) coordinate,

C(z, t = 0) = α0(1+ SCz), SC = 1, (62)

while the third case is for unstable linear stratification,

C(z, t = 0) = α0(2+ SCz), SC = −1. (63)

In the cases of stable (SC = 1) and unstable (SC =−1) stratification, shear-periodic bound-
ary conditions in thez-direction are imposed on the instantaneous concentration fluctuation
C′ =C−C0(z, t), whereC0(z, t) is the instantaneous mean concentration in a given (x− y)
plane. The simulation is continued tot = 6.

Figure 13 shows the temporal development of the turbulence kinetic energy relative
difference (E2w − E1w)/E1w due to the two-way coupling (where the subscripts 2w and
1w denote respectively two-way and one-way coupling). The figure shows that, as expected
[1], E2w(t) is reduced compared toE1w(t) in the case of stable stratification and increased
for unstable stratification. In the non-stratified case, the modification ofE(t) compared to
the one-way coupling case is negligible.

FIG. 13. Temporal development of the modification of the turbulence kinetic energy in the homogeneous
turbulent shear bubble-laden flow.
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In the simulations with both one- and two-way coupling, the volume integral ofC over
the computational domain is conserved with accuracy'0.2%. A typical run until timet = 8
of the DNS using TF-LEM solver takes one CPU-hour on Cray-T90. This is at least one
order of magnitude less than the amount of CPU-time required for the same simulation
using the trajectory approach.

IV. CONCLUDING REMARKS

We have developed a Lagrangian–Eulerian mapping solver (LEM) for direct numerical
simulations (DNS) of particle-laden turbulent flows using the two-fluid formulation (TF).
The motivation for using TF in DNS of particle-laden flows is that it reduces significantly
the required CPU-time and storage memory, as compared to the trajectory approach [2].

In order validate the new method, we performed DNS with TF-LEM of three different
flows: a bubble-laden Taylor–Green vortex, a two-dimensional, spatially developing mix-
ing layer, and a three-dimensional homogeneous shear turbulent flow. The results show
that LEM is superior to the standard finite-difference scheme (FDS) for the intergation of
the equations for the bubble velocity and concentration. In the case of sufficiently large
bubbles (i.e., whose response time is large enough), FDS is not capable of resolving the
large gradients of the bubble-phase velocity and concentration. These gradients are created
by nonlinear advection as well as preferential accumulation, causing the development of
numerical instability in the absence ofany diffusion terms in the equations of motion of
the bubble phase. In contrast, LEM resolves the gradients of the velocity and concentration
without creating numerical instability, even if the bubbles added-mass inertia is significant
and their preferential accumulation is well pronounced.
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